COUNT_IF (window)

Function COUNT_IF is also found in the following categories: Aggregate functions.

Syntax

COUNT_IF( expression, condition
          TOTAL | WITHIN ... | AMONG ...
        )

More info:

COUNT_IF( expression, condition
          TOTAL | WITHIN ... | AMONG ...
          [ BEFORE FILTER BY ... ]
        )

More info:

Description

Returns the number of items in the specified window meeting the expression condition.

Argument types:

  • expressionFractional number | Integer
  • conditionBoolean

Return type: Same type as (expression)

Example

Source data

Date City Category Orders Profit
'2019-03-01' 'London' 'Office Supplies' 8 120.80
'2019-03-04' 'London' 'Office Supplies' 2 100.00
'2019-03-05' 'London' 'Furniture' 1 750.00
'2019-03-02' 'Moscow' 'Furniture' 2 1250.50
'2019-03-03' 'Moscow' 'Office Supplies' 4 85.00
'2019-03-01' 'San Francisco' 'Office Supplies' 23 723.00
'2019-03-01' 'San Francisco' 'Furniture' 1 1000.00
'2019-03-03' 'San Francisco' 'Furniture' 4 4000.00
'2019-03-02' 'Detroit' 'Furniture' 5 3700.00
'2019-03-04' 'Detroit' 'Office Supplies' 25 1200.00
'2019-03-04' 'Detroit' 'Furniture' 2 3500.00

Grouped by [Date], [Category].

Sorted by [Date], [Category].

Formulas:

  • Date: [Date] ;
  • Category: [Category] ;
  • Profit: SUM([Profit]) ;
  • COUNT_IF TOTAL: COUNT_IF(SUM([Profit]), [Category] = 'Furniture' TOTAL) ;
  • COUNT_IF WITHIN: COUNT_IF(SUM([Profit]), [Category] = 'Furniture' WITHIN [Date]) ;
  • COUNT_IF AMONG: COUNT_IF(SUM([Profit]), [Category] = 'Furniture' AMONG [Date]) .

Result

Date Category Profit COUNT_IF TOTAL COUNT_IF WITHIN COUNT_IF AMONG
'2019-03-01' 'Furniture' 1000.00 5.00 1.00 5.00
'2019-03-01' 'Office Supplies' 843.80 5.00 1.00 0.00
'2019-03-02' 'Furniture' 4950.50 5.00 1.00 5.00
'2019-03-03' 'Furniture' 4000.00 5.00 1.00 5.00
'2019-03-03' 'Office Supplies' 85.00 5.00 1.00 0.00
'2019-03-04' 'Furniture' 3500.00 5.00 1.00 5.00
'2019-03-04' 'Office Supplies' 1300.00 5.00 1.00 0.00
'2019-03-05' 'Furniture' 750.00 5.00 1.00 5.00

Data source support

ClickHouse 21.8, Microsoft SQL Server 2017 (14.0), MySQL 5.7, Oracle Database 12c (12.1), PostgreSQL 9.3.

Previous
Next